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1. Introduction

The Navier–Stokes equations conserve mass, momentum and kinetic energy in the limits of inviscid and incompressible
flow. The equation for kinetic energy is derived from the momentum equation; it is therefore a consequence of the discret-
ized momentum balance rather than a separate equation. For this reason, the conservation of kinetic energy is commonly
referred to as secondary conservation, in contrast to the primary conservation of mass and momentum. When solving the
Navier–Stokes equations numerically, there are several reasons to discretely mimic the exact conservation properties of
these three quantities. First, since the kinetic energy is a norm of the solution, a method that conserves this property is guar-
anteed to be stable. Secondly, it is well known that absence of artificial dissipation leads to vastly improved accuracy in large
eddy simulations (LES) [1].

The discrete conservation properties of numerical methods for the Navier–Stokes equations are strongly dependent on
the way variables are arranged on the grid. On staggered grids, discrete operators based on symmetric central difference
stencils with primary and secondary conservation have been constructed in several studies [2–5]. For complex solution do-
mains, a co-located variable arrangement holds significant advantages over the staggered one. On co-located grids, however,
the use of symmetric central difference operators gives rise to the problem commonly known as pressure checker-boarding
[6]. The pressure checker-boarding arises due to the resulting wider stencil of the Laplacian in the pressure equation, which
decouples nearby grid points. This problem of pressure checker-boarding is widely known, and various workarounds have
been proposed in the literature [7–10]. These cures are similar in the sense that they all introduce a face velocity that (explic-
itly or implicitly) depends on an interpolated pressure gradient. Although this eliminates the problem of pressure checker-
boarding, it introduces a spurious term in the pressure equation that causes dissipation of kinetic energy [6,11,12]. As a
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result, a solver with co-located variable arrangement that exactly conserves mass, momentum and kinetic energy has not yet
been formulated in the literature.

The objective of the present paper is to develop a solution procedure for the incompressible Navier–Stokes equations with
co-located variable arrangement that exactly conserves mass, momentum and kinetic energy in the inviscid limit. This is
accomplished by utilizing vectors that span the null space of the discrete pressure Laplacian to obtain a smooth pressure
field. The method is developed here in the context of Cartesian grids to illustrate the concept, but it should generalize to
more complex mesh arrangements.

2. Governing equations

The governing equations for incompressible flow in Cartesian coordinates are
@ui

@xi
¼ 0; ð1aÞ
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where P is the pressure divided by the constant density, ui is the velocity vector, and the viscous stress tensor is
sji ¼ m
@ui

@xj
þ @uj

@xi

� �
;

where m is the kinematic viscosity. The Poisson equation for pressure is derived by taking the divergence of (1b) and using
(1a); this yields
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: ð2Þ
The incompressible Navier–Stokes equations are insensitive to the mean level of pressure; this is reflected mathematically
by the Laplacian @2=@x2

i in (2) being singular with a null space of rank 1 corresponding to constant functions.

3. Semi-discrete equations on a Cartesian grid

Denote a second-order accurate central difference approximation of the first derivative in the 1-direction by
df
dx1

����
ðijkÞ
¼ fðiþ1;j;kÞ � fði�1;j;kÞ

2Dx1;ðiÞ
;

where subscripts in parentheses indicate the index of the grid point and x1; x2; x3 are the coordinate directions. Note that
Dx1 only depends on the (i) index for an orthogonal structured (but possibly stretched) Cartesian grid. To discretely conserve
energy the convective term is discretized in its skew-symmetric form; this yields the semi-discrete equations for conserva-
tion of mass and momentum as
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where the viscous term is left in continuous form since this work only considers the limit of inviscid flow. It is straight-for-
ward to show that Eqs. (3a) and (3b) discretely conserves mass, momentum and kinetic energy on a periodic domain. The
discrete Poisson equation for pressure is then derived by applying the discrete divergence operator d=dxi to (3b) and making
use of (3a); this yields
d
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The discrete Laplacian is the product of two discrete first derivatives, which implies that its null space includes odd–even
oscillations (the p-mode) in addition to constant functions. For example, in 1D the discrete Laplacian with a second-order
accurate scheme is
1
2Dx1;ðiÞ

Pðiþ2;jkÞ � PðijkÞ
2Dx1;ðiþ1Þ

�
PðijkÞ � Pði�2;jkÞ

2Dx1;ði�1Þ

� �
; ð5Þ
which is simply an approximation to the second derivative on a twice coarser grid. Higher-order schemes yield a similar re-
sult. In multiple dimensions, the null space trivially includes all modes that are either constant or odd-even oscillations in
every direction. To formalize this, the null space of the discrete 3D Laplacian in (4) is spanned by the modes
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bP0;ðijkÞ ¼ 1; bP1;ðijkÞ ¼ ð�1Þi; bP2;ðijkÞ ¼ ð�1Þj; bP3;ðijkÞ ¼ ð�1Þiþj
; bP4;ðijkÞ ¼ ð�1Þk; bP5;ðijkÞ ¼ ð�1Þiþk

;bP6;ðijkÞ ¼ ð�1Þjþk
; bP7;ðijkÞ ¼ ð�1Þiþjþk
In other words, if ~p is a solution of (4), then
PðijkÞ ¼ ~pðijkÞ þ
X7

l¼0

al
bPl;ðijkÞ ð6Þ
for any vector a ¼ ða0; a1; . . . ; a7ÞT , is also a solution of (4). Note that these specific vectors span the null space only for a
Laplacian operator on a Cartesian grid and this is the only step in the algorithm that depends on the grid connectivity
and the discretization method. In the general case it is always possible to construct null space vectors using an algorithm
like singular value decomposition (SVD) [13].

The approach taken in this work is to first solve the discrete Poisson equation, and then to modify the obtained solution ~p
by adding some combination of null space modes to create a smooth final pressure field. In principle, this is no different from
the standard practice in incompressible flow solvers to add an arbitrary mean pressure field afterwards; it is simply a reflec-
tion of the fact that the Laplacian is singular. This can also be viewed as a special kind of filtering of the pressure field, where
the filtering is restricted to the null space of the Laplacian to preserve kinetic energy conservation. Finally, the common prac-
tice of adding Rhie–Chow [7] dissipation to the system can be seen as a way to modify (4); since the Rhie–Chow method
operates outside of the null space, it destroys the kinetic energy conservation property.

It is clear that the final pressure field P will solve the discrete Poisson equation provided that (6) is used to ensure smooth-
ness; the question is how should the coefficients a be chosen? One natural approach is to measure the (lack of) smoothness
of P in the L2 norm, and require this to be minimum. This is appealing from a physical point-of-view, and is what is implicitly
done in Rhie–Chow regularization. In vector notation the weighted L2 norm is given by
kPk2 ¼ PT VP;
where P is a vector with elements PðijkÞ in some ordering and V is a symmetric positive definite matrix. In the present work we
simply take V to be diagonal with elements Dx1;ðiÞDx2;ðjÞDx3;ðkÞ, i.e., the volume of each grid cell. Inserting expression (6) yields
a convex quadratic
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with the minimizer given by
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This is simply an 8 � 8 system that can be easily solved for the coefficients a. In fact, the matrix does not depend on the solu-
tion, and can therefore be inverted in a pre-processing step.

To summarize, the proposed algorithm is to solve the Poisson equation for ~p, then to find a from (7), and then to get the
final pressure field P from (6). The computational cost of the two additional steps is insignificant compared to the Poisson
solve.
4. Numerical experiments

The equations are integrated in time using the Crank–Nicolson scheme. The implicit coupled non-linear system of equa-
tions are solved using the fractional step algorithm [14], with the approximate factorization technique as outlined in [15]
used for implicit solution of momentum equations. In the following three inviscid test problems in periodic domains are pre-
sented, with the goal of confirming the exact conservation properties and that the order of accuracy is maintained.
4.1. Taylor vortex

This two-dimensional flow is an analytical solution of the Navier–Stokes equations [14]. In the inviscid limit, the analyt-
ical solution on a periodic domain x; y 2 ½�1;1Þ is
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Fig. 1. Inviscid Taylor vortex. (a) Temporal evolution of kinetic energy using the present (solid) and Rhie–Chow (dotted) methods. (b–d) Pressure contours
for the present (b), Rhie–Chow method (c) and without any correction (d).
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u ¼ � cosðpxÞ sinðpyÞ;
v ¼ sinðpxÞ cosðpyÞ;

p ¼ � cosð2pxÞ þ cosð2pyÞ
4

:

Fig. 1(a) shows the time evolution of kinetic energy on a 322 mesh with both the present method and when using the Rhie–
Chow [7] momentum interpolation. The conservation of kinetic energy with the present method, and the lack thereof with
Rhie–Chow interpolation, are clearly seen. To demonstrate the smoothness of the pressure field, Fig. 1(b) and (c) compares
pressure contours from the two methods; the present method generates an equally smooth pressure field as the Rhie–Chow
method. In contrast, Fig. 1(d) shows the pressure field without the null-space correction (or Rhie–Chow interpolation); the
pressure checker-boarding is clearly evident.

4.2. Convecting vortex

To evaluate the order of accuracy we consider a vortex convected by a uniform flow on a domain x; y 2 ½�0:5;0:5Þ. The
initial velocity field is taken as [16]
u ¼ U1 � C
ðy� ycÞ

R2 e�r2=2; v ¼ C
ðx� xcÞ

R2 e�r2=2;
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðy� ycÞ

2
q

=R. The parameters are taken as C ¼ 0:00625; R ¼ 0:125, and U1 ¼ 1. The L1 norm of the
error after one period is shown in Fig. 2(a) for both the present and Rhie–Chow methods. The errors from the two methods
are indistinguishable, and both decrease as Dx2 as expected for a second-order method. Therefore, the null space strategy
does not introduce additional error. Fig. 2(b) shows the temporal evolution of the total momentum and kinetic energy for
10 periods on a 642 mesh; the present method clearly conserves these properties to machine precision.

4.3. Inviscid turbulence in a periodic box

The final test of the proposed method is the computation of the evolution of inviscid turbulence on a domain
x; y; z 2 ½0;2pÞwith 323 grid points. The initial condition consists of a three-dimensional solenoidal random field with energy
spectrum
EðjÞ / j4e�2j2
:
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Fig. 3. Inviscid turbulence in a periodic box. (a) Temporal evolution of the energy spectrum. (b) Temporal evolution of the total kinetic energy with the
present (solid) and Rhie–Chow (dotted) methods.
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Fig. 2. Inviscid convecting vortex. (a) L1 norm of the error in u after one period. (b) Temporal evolution of kinetic energy and momentum.
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Fig. 3(a) shows the evolution of the energy spectrum with time. The spectrum approaches a j2 distribution after long time,
which implies an equi-partition of energy among all wavenumbers; this is the correct behavior for this inviscid system.
Fig. 3(b) shows the total kinetic energy with both the present and Rhie–Chow methods. While the present method exactly
conserves the kinetic energy, the unphysical dissipation in the Rhie–Chow method decreases the energy by more than 20%
over the course of the simulation.

5. Summary

A numerical method for the incompressible Navier–Stokes equations that discretely conserves mass, momentum and ki-
netic energy in the inviscid limit on co-located grids is presented. The method relies on symmetric central difference oper-
ators, which together with a skew-symmetric form of the convective term yields the conservation properties. The discrete
Laplacian operator in the pressure equation has a null space of rank 8 in three dimensions, compared to rank 1 for the con-
tinuous equations. While existing co-located methods reduce the rank of the null space by introducing numerical dissipation
(most commonly through the Rhie–Chow momentum interpolation method [7]), in the present method we retain the dis-
crete Laplacian operator intact and utilize vectors that span the null space to achieve a smooth pressure field.

In the present note only Cartesian grids are considered, but the method should generalize to more complex geometries.
Nothing in the approach inherently requires the use of structured Cartesian grids; the only challenge on more complex grids
(curvilinear or unstructured) would be to find the vectors that span the null space of the discrete Laplacian.
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